
Course unit English denomination Protein Structure Analysis: Databases, Visualization, and Functional Insights

SS BIO10, BIOS-07/A - Biochimica

Teacher in charge (if defined) Emanuela Leonardi

Teaching Hours 10

Number of ECTS credits allocated 2

Course period To be defined

Course delivery method In presence
 Remotely
 Blended

Language of instruction English

Mandatory attendance Yes (80% minimum of presence)

No

Course unit contents Throughout the course, students will explore the intricate relationships between protein structure, function, and interactions. Participants will learn to navigate and retrieve protein structures from primary databases like the Protein Data Bank (PDB) and AlphaFoldDB and visualize them using tools such as PyMOL. The course covers essential structural elements—such as binding sites, secondary structure motifs, and active sites—and examines their roles in protein function and interactions. Additionally, advanced methods based on residue interaction networks (RINs) will be introduced for analyzing structure-function relationships and predicting residue interactions relevant to drug design and biotechnology.

The course consists of five two-hour lessons structured as follows:

Lesson 1: Introduction to protein structure and databases

Lesson 2: Visualization tools and structural analysis

Lesson 3: Structural prediction and homology modeling

Lesson 4: Function, interactions, and biotechnological implications

Lesson 5: Residue Interaction Networks (RIN) and their applications

Learning goals At the end of the course, students will have acquired knowledge on:

- The fundamental principles of protein structure and their functional implications.
- Structural prediction methodologies, including homology modeling and AI-based approaches (AlphaFold).
- Residue Interaction Networks (RIN), their role in structural analysis, and the tools for their construction and interpretation.

Students will be able to:

- Consult and use structural databases to extract and analyze protein-related information.
- Use molecular visualization software to explore protein structures and identify key structural elements.
- Generate structural models through homology modeling and assess their reliability.
- Build and analyze Residue Interaction Networks (RIN) to identify functional residues and evaluate the effects of mutations.

By the end of the course, students will have developed the ability to:

- Apply a critical approach to protein structure analysis, integrating data from various bioinformatics sources.
- Effectively communicate the results of structural analysis using graphical representations and accurate descriptions.

Teaching methods Lectures, practical exercises, group work

Course on transversal, Yes
interdisciplinary, No
transdisciplinary skills

Available for PhD
students from other
courses Yes
 No

Prerequisites
(not mandatory)

Examination methods
(if applicable) Multiple-choice test

Suggested readings

Additional information

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

PhD in Biomedical Sciences